Dispersion Physik – Definition, Erklärung und Beispiele

Erfahre hier, wie die Ausbreitungsgeschwindigkeit des Lichts von der Wellenlänge abhängt und was normale und anomale Dispersion bedeuten. Entdecke, wie ein Prisma weißes Licht in Spektralfarben aufteilt und warum.

Inhaltsverzeichnis zum Thema Dispersion in der Physik

Das Quiz zum Thema: Dispersion Physik

Wann tritt normale Dispersion auf?

Frage 1 von 4

Welches Beispiel zeigt Dispersion in der Natur?

Frage 2 von 4

Wie kann man mit einem Prisma weißes Licht in seine Spektralfarben aufteilen?

Frage 3 von 4

Welche Wirkung hat Dispersion auf weißes Licht?

Frage 4 von 4

Dispersion im Überblick

  • Dispersion beschreibt die Abhängigkeit der Ausbreitungsgeschwindigkeit des Lichts von der Wellenlänge bzw. die Abhängigkeit des Brechungsindex von der Frequenz des Lichts.
  • Normale Dispersion ist gegeben, wenn der Brechungsindex mit zunehmender Frequenz steigt:
    \frac{dn}{df} > 0

  • Anomale Dispersion liegt vor, wenn der Brechungsindex mit steigender Frequenz sinkt:
    \frac{dn}{df} < 0

Dispersion in der Physik: Lernvideo

Quelle sofatutor.com

Dispersion einfach erklärt  

Die bunten Farben eines Regenbogens am Himmel, in einem Ölfleck oder die Farbzerlegung, wenn man weißes Licht auf ein Prisma schickt … All dies sind Beispiele für Dispersion. Aber was ist die Bedeutung von Dispersion genau und wie kann man das erklären?
Dispersion gehört in der Physik zum Gebiet der Optik.
Wir wissen, dass weißes Licht aus verschiedenen Farben besteht. Jede Farbe entspricht dabei einer Wellenlänge. Blaues Licht z. B. hat eine kürzere Wellenlänge als rotes Licht.
Licht wird beim Übergang von einem Medium in ein anderes gebrochen. Dabei hängt die Stärke der Lichtbrechung vom sogenannten Brechungsindex des Mediums ab.
Die Definition des Brechungsindex ist das Verhältnis der Wellenlänge (und damit der Phasengeschwindigkeit) im Vakuum \lambda_0 zu derjenigen im Medium \lambda_\text{m}:
n = \frac{\lambda_0}{\lambda_\text{m}}

Lichtbrechung Bsp Luft-Wasser

Brechungsindizes haben je nach Medium verschiedene Werte. Luft z. B. hat den Brechungsindex n=1. Da Wasser einen anderen Brechungsindex hat, wird Licht beim Auftreffen auf die Wasseroberfläche gebrochen. Bei diesem Übergang wird das Licht zum Lot (senkrechte Linie) gebrochen, da der Strahl von einem optisch dünneren zu einem optisch dichteren Medium übergeht. Beim Übergang von optisch dicht zu optisch dünn (z. B. Wasser zu Luft) wird der Strahl vom Lot weg gebrochen. Das Auge berechnet diese Lichtbrechung nicht ein und so kommt es, dass man Dinge im Wasser an einer anderen Stelle sieht, als sie tatsächlich sind. 

Die Dispersionsrelation beschreibt nun die Abhängigkeit der Ausbreitungsgeschwindigkeit (und damit des Brechungsindex) der Welle in einem Medium von der Wellenlänge (bzw. Frequenz).

Normale Dispersion und anomale Dispersion

Wellenlänge und Frequenz einer Welle hängen über die Ausbreitungsgeschwindigkeit antiproportional miteinander zusammen:
\lambda = \frac{c}{f},
wobei \lambda die Wellenlänge, c die Ausbreitungsgeschwindigkeit und f die Frequenz der Welle ist.
Eine große Wellenlänge entspricht also einer niedrigen Frequenz.
Somit hat rotes Licht mit einer größeren Wellenlänge eine niedrigere Frequenz als blaues Licht, das einer kurzen Wellenlänge, aber einer hohen Frequenz entspricht.
Setzt man diese Formel in die Formel für den Brechungsindex ein, erhält man:
n = \frac{\lambda_0}{\lambda_\text{m}} = \frac{c_0}{c_\text{m}}

Normale Dispersion liegt dann vor, wenn der Brechungsindex n mit steigender Frequenz f steigt. Hier wird blaues Licht mit größerer Frequenz also stärker gebrochen als rotes Licht. Die Formel lautet:
\frac{dn}{df} > 0
Der Bruch zeigt die Ableitung des Brechungsindex n nach der Frequenz f, also die Steigung, an. Bei normaler Dispersion steigt n mit f und so ist die Ableitung größer als null.
Beispiele für normale Dispersion sind der Übergang von Luft zu Wasser oder Glas (wie z. B. ein Prisma).

Bei anomaler Dispersion hingegen sinkt der Brechungsindex mit steigender Frequenz. Somit gilt:
\frac{dn}{df} < 0
Anomale Dispersion tritt selten auf, z. B. an farbigen Medien.

Dispersion am Beispiel des Prismas

Dispersion am Prisma mit normaler Dispersion.

Weißes Licht besteht aus einem breiten Spektrum an Farben und damit Wellenlängen bzw. Frequenzen. Mit einem Prisma kann weißes Licht in seine Spektralfarben aufgefächert werden. Das Bild zeigt ein Prisma aus einem Material mit normaler Dispersion. Das Prisma wird mit weißem Licht bestrahlt. Da rotes Licht eine niedrigere Frequenz hat, wird es weniger gebrochen als das Licht höherer Frequenz. So entsteht ein Farbmuster, wobei Rot am wenigsten und Violett am meisten gebrochen wird.
Nutzt man ein Prisma aus einem Material mit anomaler Dispersion, dreht sich die Reihenfolge der Farben um.

Häufig gestellte Fragen zum Thema Dispersion in der Physik

Dispersion beschreibt die Abhängigkeit der Ausbreitungsgeschwindigkeit bzw. des Brechungsindex von der Wellenlänge bzw. Frequenz des Lichts.

Wenn ein Elektron von einem höheren Energiezustand in einen niedrigeren Energiezustand springt, kann es die Energiedifferenz als Licht abgeben.

Dispersion tritt auf, wenn Licht auf ein Medium mit anderem Brechungsindex trifft, wie z. B. von Luft auf Glas (Prisma).

Blaues Licht hat eine sehr hohe Frequenz. Bei normaler Dispersion steigt der Brechungsindex mit höherer Frequenz.

Weißes Licht besteht aus verschiedenen Farben. Das erkennt man, wenn Licht durch ein Prisma gebrochen wird. Es besteht aus den Farben Rot, Orange, Gelb, Grün, Cyan, Blau und Violett.

Verschiedene Wellenlängen (und damit Farben) werden verschieden stark gebrochen, da die Ausbreitungsgeschwindigkeit der Welle abhängig von der Wellenlänge ist.

Super! Das Thema: kannst du schon! Teile deine Learnings und Fragen mit der Community!